HIGH-ENERGY SOLAR PHYSICS WITH
GLAST

THE HIGH-ENERGY SOLAR EXPERIMENT
VACUUM DURING SOLAR CYCLE 24

SUMMARY OF GAMMA-RAY OBSERVATIONS
>10 MeV

OUTSTANDING QUESTIONS THAT
GLAST CAN ADDRESS

SATURATION EFFECTS DURING INTENSE
FLARES
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ISES Solar Cycle Sunspot Number Progression
(Data Through 31 Aug 00)
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Neutron and y-ray
Production in
Solar Flares

corona
e,p, 3He, o, C.N. O, ..

chromosphere A
— »
reaction
products
Y
electrons: X- and y-ray bremsstrahiung
ions: radioactive nuclei — et — yz1+

n — Y (decay, e* bremsstrahiung)
excited nuclei — y-ray line radiation
escape to space

neutrons —
S 2.223 MeV capture line
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Measurement of Accelerated Particles at the
Sun

Gerald Share and Ronald Murphy
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STATISTICS OF HIGH-ENERGY GAMMA-RAY FLARES

24 flares observed >10 MeV in over a solar cycle by the SMM
spectrometer (~150 cm?). /9®0~ /989

18 of these flares were X-class X-ray flares and 6 were M-Class
(1/10 soft X-ray flux of X-class).

Evidence for beaming of high-energy radiation comes from
distribution of high-energy flares on the Sun and from hardening
of spectra for flares near the limb (suggests a pancake
distribution of radiation).

There were 88 X-class flares:
Full sample >10 MeV No >10 MeV

% observed at
heliocentric angles >60° 42 + 8 71M+23 31+8
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>16 MeV Count Rate (s")
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FIGURE 1. Time profile of the solar emission > 50 MeV on

1991, June 11, 1901
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LOCALIZATION OF THE FLARE
REGION

30-60 arcsec localization can distinguish region where
particles interact.

HESSI provides 36 arcsec resolution in 1 — 10 MeV
region.

For 0.5° containment of GLAST at 1 GeV and good
calibration on point sources, it is possible to
determine whether the flare region is more extended
than ~5 arcmin. Suggestions that high-energy
particles interact over these scales.
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UNIQUE SOLAR PHYSICS
CAPABILITIES OF GLAST

ONLY PLANNED HIGH-ENERGY MISSION THAT
CAN OBSERVE SOLAR FLARES

ABILITY TO DISTINGUISH ACCELERATED
ELECTRONS AND PROTONS FROM IMPULSIVE
TO GRADUAL PHASE

TIME SCALES FOR HIGH-ENERGY
ACCELERATION IN FLARES

UPPER BOUND TO ACCELERATION ENERGY IN
FLARES (>10 GeV?)

CONTINUOUS ACCELERATION OF PARTICLES
OR TRAPPING?

FUNDAMENTAL INFORMATION ON HIGH ENERGY
ACCELERATION IN ASTROPHYSICAL PLASMAS

COMPARISON WITH PARTICLE SPECTRA
OBSERVED IN SPACE

ARE HIGH-ENERGY PROTONS ACCELERATED IN
WEAK SOLAR FLARES? CR INTERACTIONS?

COMPARISON OF PION AND BREMSSTRAHLUNG
EMISSION => DIRECTIONALITY/TRANSPORT



SATURATION EFFECTS DURING FLARES

HIGH ENERGY EMISSION:

Maximum observed flux >10 MeV at peak of largest flares:
~5ycm?s™. This would yield a rate in each tower of

5 x 10° s (assuming 100% efficiency). This would require
using only 4 towers to not exceed the 20 kHz event limit.

HARD X-RAYS AND LOW-ENERGY GAMMA-RAYS

Assume that Si is sensitive to photons >50 keV.

Flux >50 keV reaches levels of 10*y cm?s™ at the peak of
the largest flare observed to date (e.g. 4 June 1991).

= Rate of 10" s™* without attenuation in an individual tower.
What is maximum rate that a single silicon layer can handie?
0.1 MHz? If so we need to reduce the overall rate by at least
1 to 2 orders of magnitude. This would require turning off
the upper silicon layers of the towers.

= What is the true event rate based on the criterion that 6
silicon layers must trigger? Energy dependence; chance
coincidences. Requires detailed calculations.

Observation of the impulsive phase of flares is important!
Acceleration time scales; rapid variability; electron/proton
ratio; location of high energy and low energy interaction
regions.

Fluxes drop within about 50 to 1000 s to levels where
GLAST can observe these large flares without any special
effort.



What can be done?
=>» Ability to turn off 12 outside towers.

=>» Ability to turn off upper layers of inside 4 towers. Can this
be done automatically as rates exceed a certain level?

A 700 keV electron has a range of about 0.5 gm cm™ in lead,
or about 6 silicon layers (event criterion). Therefore let's
consider the flux of gamma-rays >0.8 MeV. For the largest
flares the peak flux is ~10 cm™ s™. Assuming an optimistic
50% efficiency for producing a GLAST event of 6 layers,
yields an event rate of 5 kHz per tower. This event rate is
right at the limit of GLAST's capability for 4 operating towers.

The next thing to consider is the reduction in overall rates in
individual silicon layers. For example, assuming that the
upper 20 layers (10 Pb layers) are turned off, how many
photons would reach lower layers? For a dN/dE « E™*°
spectrum and incident >50 keV flux of 10* y cm?s™ (largest
X-class flare) the maximum rates in a single layer (assuming
100% conversion) are:

2>~1.5x 10*s™" < 150 keV
2>~2.5x 10*s"> 150 keV

These rates can be handled by 0.1 MHz electronics. Can
we reduce the number of dead layers?

Effect of using only lower layers: reduced angular
resolution.



